Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices
نویسندگان
چکیده
The integration of micro/nanofluidic devices led to many interesting phenomena and one of the most important and complex phenomenon among them is concentration polarization. In this paper, we report new physical insights in micro/nanofluidic interface devices on the application of ac and dc electric fields. By performing detailed numerical simulations based on the coupled Poisson, Nernst–Planck, and incompressible Navier–Stokes equations, we discuss electrokinetic transport and other hydrodynamic effects under the application of combined ac and dc electric fields for different nondimensional electrical double layer (EDL) thicknesses and nanochannel wall surface charge densities. We show that for a highly ion-selective nanochannel, the application of the combined ac/dc electric field, at amplitudes greater than the dc voltage and at a low Strouhal number, results in large dual concentration polarization regions (with unequal lengths) at both the micro/nanofluidic interfaces due to large and unequal voltage drops at these junctions. The highly nonlinear potential distribution gives rise to an electric field and body force that changes the electrokinetic fluid velocity from that obtained on the application of only a dc source. [DOI: 10.1115/1.4023442]
منابع مشابه
Numerical Simulation of Blood Flow Mixed with Magnetic Nanoparticles under the Influence of AC and DC Magnetic Field
Nanoparticles combined with magnetic fields are one of the most important research areas in the field of biomedical engineering. Direct Current (DC) magnetic and Alternative Current (AC) magnetic fields are often used for controlling nanoparticles. It is also used for hyperthermia treatment. The purpose of the current study is to investigate the effect of DC and AC magnetic field on nanoparticl...
متن کاملEffects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.
Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been eluci...
متن کاملDielectrophoretic separation of bioparticles in microdevices: a review.
In recent years, dielectrophoretic force has been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. This specific electrokinetic technique has been used for trapping, sorting, focusing, filtration, patterning, assembly, and separating biological en...
متن کاملInduced-charge electrokinetic phenomena: theory and microfluidic applications.
We give a general, physical description of "induced-charge electro-osmosis" (ICEO), the nonlinear electrokinetic slip at a polarizable surface, in the context of some new techniques for microfluidic pumping and mixing. ICEO generalizes "ac electro-osmosis" at microelectrode arrays to various di-electric and conducting structures in weak dc or ac electric fields. The basic effect produces microv...
متن کاملTheoretical Study of the Transpore Velocity Control of Single-Stranded DNA
The electrokinetic transport dynamics of deoxyribonucleic acid (DNA) molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated u...
متن کامل